Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Microlife ; 5: uqae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659623

RESUMO

The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.

3.
Cell Commun Signal ; 22(1): 158, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439036

RESUMO

BACKGROUND: BMP9 and BMP10 are two major regulators of vascular homeostasis. These two ligands bind with high affinity to the endothelial type I kinase receptor ALK1, together with a type II receptor, leading to the direct phosphorylation of the SMAD transcription factors. Apart from this canonical pathway, little is known. Interestingly, mutations in this signaling pathway have been identified in two rare cardiovascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. METHODS: To get an overview of the signaling pathways modulated by BMP9 and BMP10 stimulation in endothelial cells, we employed an unbiased phosphoproteomic-based strategy. Identified phosphosites were validated by western blot analysis and regulated targets by RT-qPCR. Cell cycle analysis was analyzed by flow cytometry. RESULTS: Large-scale phosphoproteomics revealed that BMP9 and BMP10 treatment induced a very similar phosphoproteomic profile. These BMPs activated a non-canonical transcriptional SMAD-dependent MAPK pathway (MEKK4/P38). We were able to validate this signaling pathway and demonstrated that this activation required the expression of the protein GADD45ß. In turn, activated P38 phosphorylated the heat shock protein HSP27 and the endocytosis protein Eps15 (EGF receptor pathway substrate), and regulated the expression of specific genes (E-selectin, hyaluronan synthase 2 and cyclooxygenase 2). This study also highlighted the modulation in phosphorylation of proteins involved in transcriptional regulation (phosphorylation of the endothelial transcription factor ERG) and cell cycle inhibition (CDK4/6 pathway). Accordingly, we found that BMP10 induced a G1 cell cycle arrest and inhibited the mRNA expression of E2F2, cyclinD1 and cyclinA1. CONCLUSIONS: Overall, our phosphoproteomic screen identified numerous proteins whose phosphorylation state is impacted by BMP9 and BMP10 treatment, paving the way for a better understanding of the molecular mechanisms regulated by BMP signaling in vascular diseases.


Assuntos
Proteínas Morfogenéticas Ósseas , Células Endoteliais , Pontos de Checagem do Ciclo Celular , Fosforilação , Pontos de Checagem da Fase G1 do Ciclo Celular
4.
mBio ; 15(3): e0221123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38345374

RESUMO

Due to the rising incidence of antibiotic-resistant infections, the last-line antibiotics, polymyxins, have resurged in the clinics in parallel with new bacterial strategies of escape. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa develops resistance to colistin/polymyxin B by distinct molecular mechanisms, mostly through modification of the lipid A component of the LPS by proteins encoded within the arnBCDATEF-ugd (arn) operon. In this work, we characterized a polymyxin-induced operon named mipBA, present in P. aeruginosa strains devoid of the arn operon. We showed that mipBA is activated by the ParR/ParS two-component regulatory system in response to polymyxins. Structural modeling revealed that MipA folds as an outer-membrane ß-barrel, harboring an internal negatively charged channel, able to host a polymyxin molecule, while the lipoprotein MipB adopts a ß-lactamase fold with two additional C-terminal domains. Experimental work confirmed that MipA and MipB localize to the bacterial envelope, and they co-purify in vitro. Nano differential scanning fluorimetry showed that polymyxins stabilized MipA in a specific and dose-dependent manner. Mass spectrometry-based quantitative proteomics on P. aeruginosa membranes demonstrated that ∆mipBA synthesized fourfold less MexXY-OprA proteins in response to polymyxin B compared to the wild-type strain. The decrease was a direct consequence of impaired transcriptional activation of the mex operon operated by ParR/ParS. We propose MipA/MipB to act as membrane (co)sensors working in concert to activate ParS histidine kinase and help the bacterium to cope with polymyxin-mediated envelope stress through synthesis of the efflux pump, MexXY-OprA.IMPORTANCEDue to the emergence of multidrug-resistant isolates, antibiotic options may be limited to polymyxins to eradicate Gram-negative infections. Pseudomonas aeruginosa, a leading opportunistic pathogen, has the ability to develop resistance to these cationic lipopeptides by modifying its lipopolysaccharide through proteins encoded within the arn operon. Herein, we describe a sub-group of P. aeruginosa strains lacking the arn operon yet exhibiting adaptability to polymyxins. Exposition to sub-lethal polymyxin concentrations induced the expression and production of two envelope-associated proteins. Among those, MipA, an outer-membrane barrel, is able to specifically bind polymyxins with an affinity in the 10-µM range. Using membrane proteomics and phenotypic assays, we showed that MipA and MipB participate in the adaptive response to polymyxins via ParR/ParS regulatory signaling. We propose a new model wherein the MipA-MipB module functions as a novel polymyxin sensing mechanism.


Assuntos
Polimixina B , Polimixinas , Polimixinas/farmacologia , Polimixina B/farmacologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana
5.
Cell Discov ; 10(1): 12, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296970

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

6.
Nature ; 625(7994): 366-376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093015

RESUMO

Sexual reproduction of Toxoplasma gondii, confined to the felid gut, remains largely uncharted owing to ethical concerns regarding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described1,2. Here we found that the transcription factors AP2XII-1 and AP2XI-2 operate during the tachyzoite stage, a hallmark of acute toxoplasmosis, to silence genes necessary for merozoites, a developmental stage critical for subsequent sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a marked change in the transcriptional program, promoting a full transition from tachyzoites to merozoites. These in vitro-cultured pre-gametes have unique protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit MORC and HDAC3 (ref. 1), thereby limiting chromatin accessibility and transcription. Consequently, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. Successful production of merozoites in vitro paves the way for future studies on Toxoplasma sexual development without the need for cat infections and holds promise for the development of therapies to prevent parasite transmission.


Assuntos
Gatos , Técnicas In Vitro , Estágios do Ciclo de Vida , Toxoplasma , Animais , Gatos/parasitologia , Humanos , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Técnicas In Vitro/métodos , Estágios do Ciclo de Vida/genética , Merozoítos/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/fisiologia , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/transmissão , Transcrição Gênica
7.
PLoS Pathog ; 19(11): e1011417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983287

RESUMO

Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Arabidopsis/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Potyvirus/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Doenças das Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Iniciação 4G em Eucariotos/metabolismo
8.
J Exp Clin Cancer Res ; 42(1): 318, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008756

RESUMO

BACKGROUND: TGFß induces several cell phenotypes including senescence, a stable cell cycle arrest accompanied by a secretory program, and epithelial-mesenchymal transition (EMT) in normal epithelial cells. During carcinogenesis cells lose the ability to undergo senescence in response to TGFß but they maintain an EMT, which can contribute to tumor progression. Our aim was to identify mechanisms promoting TGFß-induced senescence escape. METHODS: In vitro experiments were performed with primary human mammary epithelial cells (HMEC) immortalized by hTert. For kinase library screen and modulation of gene expression retroviral transduction was used. To characterize gene expression, RNA microarray with GSEA analysis and RT-qPCR were used. For protein level and localization, Western blot and immunofluorescence were performed. For senescence characterization crystal violet assay, Senescence Associated-ß-Galactosidase activity, EdU staining were conducted. To determine RSK3 partners FLAG-baited immunoprecipitation and mass spectrometry-based proteomic analyses were performed. Proteosome activity and proteasome enrichment assays were performed. To validate the role of RSK3 in human breast cancer, analysis of METABRIC database was performed. Murine intraductal xenografts using MCF10DCIS.com cells were carried out, with histological and immunofluorescence analysis of mouse tissue sections. RESULTS: A screen with active kinases in HMECs upon TGFß treatment identified that the serine threonine kinase RSK3, or RPS6KA2, a kinase mainly known to regulate cancer cell death including in breast cancer, reverted TGFß-induced senescence. Interestingly, RSK3 expression decreased in response to TGFß in a SMAD3-dependent manner, and its constitutive expression rescued SMAD3-induced senescence, indicating that a decrease in RSK3 itself contributes to TGFß-induced senescence. Using transcriptomic analyses and affinity purification coupled to mass spectrometry-based proteomics, we unveiled that RSK3 regulates senescence by inhibiting the NF-κΒ pathway through the decrease in proteasome-mediated IκBα degradation. Strikingly, senescent TGFß-treated HMECs display features of epithelial to mesenchymal transition (EMT) and during RSK3-induced senescence escaped HMECs conserve EMT features. Importantly, RSK3 expression is correlated with EMT and invasion, and inversely correlated with senescence and NF-κΒ in human claudin-low breast tumors and its expression enhances the formation of breast invasive tumors in the mouse mammary gland. CONCLUSIONS: We conclude that RSK3 switches cell fate from senescence to malignancy in response to TGFß signaling.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896772

RESUMO

IFITMs are a family of highly related interferon-induced transmembrane proteins that interfere with the processes of fusion between viral and cellular membranes and are thus endowed with broad antiviral properties. A number of studies have shown how the antiviral potency of IFITMs is highly dependent on their steady-state levels, their intracellular distribution and a complex pattern of post-translational modifications, parameters that are overall tributary of a number of cellular partners. In an effort to identify additional protein partners involved in the biology of IFITMs, we devised a proteomics-based approach based on the piggyback incorporation of IFITM3 partners into extracellular vesicles. MS analysis of the proteome of vesicles bearing or not bearing IFITM3 identified the NDFIP2 protein adaptor protein as an important regulator of IFITM3 levels. NDFIP2 is a membrane-anchored adaptor protein of the E3 ubiquitin ligases of the NEDD4 family that have already been found to be involved in IFITM3 regulation. We show here that NDFIP2 acts as a recruitment factor for both IFITM3 and NEDD4 and mediates their distribution in lysosomal vesicles. The genetic inactivation and overexpression of NDFIP2 drive, respectively, lower and higher levels of IFITM3 accumulation in the cell, overall suggesting that NDFIP2 locally competes with IFITM3 for NEDD4 binding. Given that NDFIP2 is itself tightly regulated and highly responsive to external cues, our study sheds light on a novel and likely dynamic layer of regulation of IFITM3.


Assuntos
Proteômica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Lisossomos/metabolismo , Antivirais/metabolismo
10.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790557

RESUMO

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cells dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cells ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulates lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation loose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo . Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

11.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818613

RESUMO

The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Histona Desacetilases , Complexo Correpressor Histona Desacetilase e Sin3 , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Hibridização in Situ Fluorescente , Cromossomo X/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
12.
Sci Adv ; 9(36): eadh0140, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672589

RESUMO

The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.


Assuntos
Núcleosídeo-Difosfato Quinase , Animais , Camundongos , Núcleosídeo-Difosfato Quinase/genética , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética , Histonas , Fígado , Ácidos Graxos , Camundongos Knockout
13.
Elife ; 122023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773033

RESUMO

Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Stem Cell Res Ther ; 14(1): 201, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568164

RESUMO

BACKGROUND: Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS: Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS: Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION: Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.


Assuntos
Alprostadil , Células-Tronco Mesenquimais , Adulto , Camundongos , Humanos , Animais , Diferenciação Celular/fisiologia , Alprostadil/metabolismo , Células-Tronco Mesenquimais/metabolismo , Interleucina-6/metabolismo , Intestinos
15.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746533

RESUMO

NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Dano ao DNA , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
16.
Sci Rep ; 13(1): 1163, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670157

RESUMO

Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with. However, the antimicrobial activity of probiotic MVs remains to be studied. In this work, we showed that membrane vesicles produced by Lacticaseibacillus casei BL23 (LC-MVs) exhibited strong antibiofilm activity against Salmonella enterica serovar Enteritidis (S. Enteritidis) without affecting bacterial growth. Furthermore, we found that LC-MVs affected the early stages of S. Enteritidis biofilm development and prevented attachment of bacteria to polystyrene surfaces. Importantly, LC-MVs did not impact the biomass of already established biofilms. We also demonstrated that the antibiofilm activity depended on the proteins associated with the LC-MV fraction. Finally, two peptidoglycan hydrolases (PGHs) were found to be associated with the antibiofilm activity of LC-MVs. Overall, this work allowed to identify the antibiofilm properties of LC-MVs and paved the way for the use of probiotic MVs against the development of negative biofilms.


Assuntos
Lacticaseibacillus casei , Salmonella enteritidis , Lacticaseibacillus , Biofilmes
17.
Nat Commun ; 14(1): 356, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690642

RESUMO

Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/genética , Complexo Repressor Polycomb 2/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-36522170

RESUMO

OBJECTIVES: Rippling muscle disease (RMD) is characterized by muscle stiffness, muscle hypertrophy, and rippling muscle induced by stretching or percussion. Hereditary RMD is due to sequence variants in the CAV3 and PTRF/CAVIN1 genes encoding Caveolin-3 or Cavin-1, respectively; a few series of patients with acquired autoimmune forms of RMD (iRMD) associated with AChR antibody-positive myasthenia gravis and/or thymoma have also been described. Recently, MURC/caveolae-associated protein 4 (Cavin-4) autoantibody was identified in 8 of 10 patients without thymoma, highlighting its potential both as a biomarker and as a triggering agent of this pathology. Here, we report the case of a patient with iRMD-AchR antibody negative associated with thymoma. METHODS: We suspected a paraneoplastic origin and investigated the presence of specific autoantibodies targeting muscle antigens through a combination of Western blotting and affinity purification coupled with mass spectrometry-based proteomic approaches. RESULTS: We identified circulating MURC/Cavin-4 autoantibodies and found strong similarities between histologic features of the patient's muscle and those commonly reported in caveolinopathies. Strikingly, MURC/Cavin-4 autoantibody titer strongly decreased after tumor resection and immunotherapy correlating with complete disappearance of the rippling phenotype and full patient remission. DISCUSSION: MURC/Cavin-4 autoantibodies may play a pathogenic role in paraneoplastic iRMD associated with thymoma.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Humanos , Timoma/complicações , Autoanticorpos , Proteômica , Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico , Neoplasias do Timo/complicações , Neoplasias do Timo/diagnóstico
19.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375840

RESUMO

Although recent advances in gene therapy provide hope for spinal muscular atrophy (SMA) patients, the pathology remains the leading genetic cause of infant mortality. SMA is a monogenic pathology that originates from the loss of the SMN1 gene in most cases or mutations in rare cases. Interestingly, several SMN1 mutations occur within the TUDOR methylarginine reader domain of SMN. We hypothesized that in SMN1 mutant cases, SMA may emerge from aberrant protein-protein interactions between SMN and key neuronal factors. Using a BioID proteomic approach, we have identified and validated a number of SMN-interacting proteins, including fragile X mental retardation protein (FMRP) family members (FMRFM). Importantly, SMA-linked SMNTUDOR mutant forms (SMNST) failed to interact with FMRFM In agreement with the recent work, we define biochemically that SMN forms droplets in vitro and these droplets are stabilized by RNA, suggesting that SMN could be involved in the formation of membraneless organelles, such as Cajal nuclear bodies. Finally, we found that SMN and FMRP co-fractionate with polysomes, in an RNA-dependent manner, suggesting a potential role in localized translation in motor neurons.


Assuntos
Proteína do X Frágil de Retardo Mental , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Humanos , Lactente , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteômica , RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
20.
Methods Mol Biol ; 2426: 67-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308685

RESUMO

In the proteomics field, the production and publication of reliable mass spectrometry (MS)-based label-free quantitative results is a major concern. Due to the intrinsic complexity of bottom-up proteomics experiments (requiring aggregation of data relating to both precursor and fragment peptide ions into protein information, and matching this data across samples), inaccuracies and errors can occur throughout the data-processing pipeline. In a classical label-free quantification workflow, the validation of identification results is critical since errors made at this first stage of the workflow may have an impact on the following steps and therefore on the final result. Although false discovery rate (FDR) of the identification is usually controlled by using the popular target-decoy method, it has been demonstrated that this method can sometimes lead to inaccurate FDR estimates. This protocol shows how Proline can be used to validate identification results by using the method based on the Benjamini-Hochberg procedure and then quantify the identified ions and proteins in a single software environment providing data curation capabilities and computational efficiency.


Assuntos
Prolina , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Software , Proteínas/química , Bases de Dados de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...